14.3. 用于预训练词嵌入的数据集¶ Open the notebook in SageMaker Studio Lab
现在我们已经了解了word2vec模型的技术细节和大致的训练方法,让我们来看看它们的实现。具体地说,我们将以 14.1节的跳元模型和 14.2节的负采样为例。本节从用于预训练词嵌入模型的数据集开始:数据的原始格式将被转换为可以在训练期间迭代的小批量。
import math
import os
import random
from mxnet import gluon, np
from d2l import mxnet as d2l
import math
import os
import random
import torch
from d2l import torch as d2l
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import math
import os
import random
import paddle
14.3.1. 读取数据集¶
我们在这里使用的数据集是Penn Tree Bank(PTB)。该语料库取自“华尔街日报”的文章,分为训练集、验证集和测试集。在原始格式中,文本文件的每一行表示由空格分隔的一句话。在这里,我们将每个单词视为一个词元。
#@save
d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip',
'319d85e578af0cdc590547f26231e4e31cdf1e42')
#@save
def read_ptb():
"""将PTB数据集加载到文本行的列表中"""
data_dir = d2l.download_extract('ptb')
# Readthetrainingset.
with open(os.path.join(data_dir, 'ptb.train.txt')) as f:
raw_text = f.read()
return [line.split() for line in raw_text.split('\n')]
sentences = read_ptb()
f'# sentences数: {len(sentences)}'
Downloading ../data/ptb.zip from http://d2l-data.s3-accelerate.amazonaws.com/ptb.zip...
'# sentences数: 42069'
#@save
d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip',
'319d85e578af0cdc590547f26231e4e31cdf1e42')
#@save
def read_ptb():
"""将PTB数据集加载到文本行的列表中"""
data_dir = d2l.download_extract('ptb')
# Readthetrainingset.
with open(os.path.join(data_dir, 'ptb.train.txt')) as f:
raw_text = f.read()
return [line.split() for line in raw_text.split('\n')]
sentences = read_ptb()
f'# sentences数: {len(sentences)}'
Downloading ../data/ptb.zip from http://d2l-data.s3-accelerate.amazonaws.com/ptb.zip...
'# sentences数: 42069'
#@save
d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip',
'319d85e578af0cdc590547f26231e4e31cdf1e42')
#@save
def read_ptb():
"""将PTB数据集加载到文本行的列表中"""
data_dir = d2l.download_extract('ptb')
# Readthetrainingset.
with open(os.path.join(data_dir, 'ptb.train.txt')) as f:
raw_text = f.read()
return [line.split() for line in raw_text.split('\n')]
sentences = read_ptb()
f'# sentences数: {len(sentences)}'
正在从http://d2l-data.s3-accelerate.amazonaws.com/ptb.zip下载../data/ptb.zip...
'# sentences数: 42069'
在读取训练集之后,我们为语料库构建了一个词表,其中出现次数少于10次的任何单词都将由“<unk>”词元替换。请注意,原始数据集还包含表示稀有(未知)单词的“<unk>”词元。
vocab = d2l.Vocab(sentences, min_freq=10)
f'vocab size: {len(vocab)}'
'vocab size: 6719'
vocab = d2l.Vocab(sentences, min_freq=10)
f'vocab size: {len(vocab)}'
'vocab size: 6719'
vocab = d2l.Vocab(sentences, min_freq=10)
f'vocab size: {len(vocab)}'
'vocab size: 6719'
14.3.2. 下采样¶
文本数据通常有“the”“a”和“in”等高频词:它们在非常大的语料库中甚至可能出现数十亿次。然而,这些词经常在上下文窗口中与许多不同的词共同出现,提供的有用信息很少。例如,考虑上下文窗口中的词“chip”:直观地说,它与低频单词“intel”的共现比与高频单词“a”的共现在训练中更有用。此外,大量(高频)单词的训练速度很慢。因此,当训练词嵌入模型时,可以对高频单词进行下采样 (Mikolov et al., 2013)。具体地说,数据集中的每个词\(w_i\)将有概率地被丢弃
其中\(f(w_i)\)是\(w_i\)的词数与数据集中的总词数的比率,常量\(t\)是超参数(在实验中为\(10^{-4}\))。我们可以看到,只有当相对比率\(f(w_i) > t\)时,(高频)词\(w_i\)才能被丢弃,且该词的相对比率越高,被丢弃的概率就越大。
#@save
def subsample(sentences, vocab):
"""下采样高频词"""
# 排除未知词元'<unk>'
sentences = [[token for token in line if vocab[token] != vocab.unk]
for line in sentences]
counter = d2l.count_corpus(sentences)
num_tokens = sum(counter.values())
# 如果在下采样期间保留词元,则返回True
def keep(token):
return(random.uniform(0, 1) <
math.sqrt(1e-4 / counter[token] * num_tokens))
return ([[token for token in line if keep(token)] for line in sentences],
counter)
subsampled, counter = subsample(sentences, vocab)
#@save
def subsample(sentences, vocab):
"""下采样高频词"""
# 排除未知词元'<unk>'
sentences = [[token for token in line if vocab[token] != vocab.unk]
for line in sentences]
counter = d2l.count_corpus(sentences)
num_tokens = sum(counter.values())
# 如果在下采样期间保留词元,则返回True
def keep(token):
return(random.uniform(0, 1) <
math.sqrt(1e-4 / counter[token] * num_tokens))
return ([[token for token in line if keep(token)] for line in sentences],
counter)
subsampled, counter = subsample(sentences, vocab)
#@save
def subsample(sentences, vocab):
"""下采样高频词"""
# 排除未知词元'<unk>'
sentences = [[token for token in line if vocab[token] != vocab.unk]
for line in sentences]
counter = d2l.count_corpus(sentences)
num_tokens = sum(counter.values())
# 如果在下采样期间保留词元,则返回True
def keep(token):
return(random.uniform(0, 1) <
math.sqrt(1e-4 / counter[token] * num_tokens))
return ([[token for token in line if keep(token)] for line in sentences],
counter)
subsampled, counter = subsample(sentences, vocab)
下面的代码片段绘制了下采样前后每句话的词元数量的直方图。正如预期的那样,下采样通过删除高频词来显著缩短句子,这将使训练加速。
d2l.show_list_len_pair_hist(
['origin', 'subsampled'], '# tokens per sentence',
'count', sentences, subsampled);
d2l.show_list_len_pair_hist(
['origin', 'subsampled'], '# tokens per sentence',
'count', sentences, subsampled);
d2l.show_list_len_pair_hist(
['origin', 'subsampled'], '# tokens per sentence',
'count', sentences, subsampled);
对于单个词元,高频词“the”的采样率不到1/20。
def compare_counts(token):
return (f'"{token}"的数量:'
f'之前={sum([l.count(token) for l in sentences])}, '
f'之后={sum([l.count(token) for l in subsampled])}')
compare_counts('the')
'"the"的数量:之前=50770, 之后=2063'
def compare_counts(token):
return (f'"{token}"的数量:'
f'之前={sum([l.count(token) for l in sentences])}, '
f'之后={sum([l.count(token) for l in subsampled])}')
compare_counts('the')
'"the"的数量:之前=50770, 之后=2056'
def compare_counts(token):
return (f'"{token}"的数量:'
f'之前={sum([l.count(token) for l in sentences])}, '
f'之后={sum([l.count(token) for l in subsampled])}')
compare_counts('the')
'"the"的数量:之前=50770, 之后=2017'
相比之下,低频词“join”则被完全保留。
compare_counts('join')
'"join"的数量:之前=45, 之后=45'
compare_counts('join')
'"join"的数量:之前=45, 之后=45'
compare_counts('join')
'"join"的数量:之前=45, 之后=45'
在下采样之后,我们将词元映射到它们在语料库中的索引。
corpus = [vocab[line] for line in subsampled]
corpus[:3]
[[], [392, 2115, 145], [5277, 3054, 1580, 95]]
corpus = [vocab[line] for line in subsampled]
corpus[:3]
[[], [2115, 274, 406], [140, 3, 5277, 3054, 1580]]
corpus = [vocab[line] for line in subsampled]
corpus[:3]
[[], [2115], [140, 5277, 3054, 1580, 95]]
14.3.3. 中心词和上下文词的提取¶
下面的get_centers_and_contexts
函数从corpus
中提取所有中心词及其上下文词。它随机采样1到max_window_size
之间的整数作为上下文窗口。对于任一中心词,与其距离不超过采样上下文窗口大小的词为其上下文词。
#@save
def get_centers_and_contexts(corpus, max_window_size):
"""返回跳元模型中的中心词和上下文词"""
centers, contexts = [], []
for line in corpus:
# 要形成“中心词-上下文词”对,每个句子至少需要有2个词
if len(line) < 2:
continue
centers += line
for i in range(len(line)): # 上下文窗口中间i
window_size = random.randint(1, max_window_size)
indices = list(range(max(0, i - window_size),
min(len(line), i + 1 + window_size)))
# 从上下文词中排除中心词
indices.remove(i)
contexts.append([line[idx] for idx in indices])
return centers, contexts
#@save
def get_centers_and_contexts(corpus, max_window_size):
"""返回跳元模型中的中心词和上下文词"""
centers, contexts = [], []
for line in corpus:
# 要形成“中心词-上下文词”对,每个句子至少需要有2个词
if len(line) < 2:
continue
centers += line
for i in range(len(line)): # 上下文窗口中间i
window_size = random.randint(1, max_window_size)
indices = list(range(max(0, i - window_size),
min(len(line), i + 1 + window_size)))
# 从上下文词中排除中心词
indices.remove(i)
contexts.append([line[idx] for idx in indices])
return centers, contexts
#@save
def get_centers_and_contexts(corpus, max_window_size):
"""返回跳元模型中的中心词和上下文词"""
centers, contexts = [], []
for line in corpus:
# 要形成“中心词-上下文词”对,每个句子至少需要有2个词
if len(line) < 2:
continue
centers += line
for i in range(len(line)): # 上下文窗口中间i
window_size = random.randint(1, max_window_size)
indices = list(range(max(0, i - window_size),
min(len(line), i + 1 + window_size)))
# 从上下文词中排除中心词
indices.remove(i)
contexts.append([line[idx] for idx in indices])
return centers, contexts
接下来,我们创建一个人工数据集,分别包含7个和3个单词的两个句子。设置最大上下文窗口大小为2,并打印所有中心词及其上下文词。
tiny_dataset = [list(range(7)), list(range(7, 10))]
print('数据集', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):
print('中心词', center, '的上下文词是', context)
数据集 [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]
中心词 0 的上下文词是 [1, 2]
中心词 1 的上下文词是 [0, 2, 3]
中心词 2 的上下文词是 [1, 3]
中心词 3 的上下文词是 [2, 4]
中心词 4 的上下文词是 [2, 3, 5, 6]
中心词 5 的上下文词是 [3, 4, 6]
中心词 6 的上下文词是 [5]
中心词 7 的上下文词是 [8]
中心词 8 的上下文词是 [7, 9]
中心词 9 的上下文词是 [8]
tiny_dataset = [list(range(7)), list(range(7, 10))]
print('数据集', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):
print('中心词', center, '的上下文词是', context)
数据集 [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]
中心词 0 的上下文词是 [1]
中心词 1 的上下文词是 [0, 2]
中心词 2 的上下文词是 [0, 1, 3, 4]
中心词 3 的上下文词是 [2, 4]
中心词 4 的上下文词是 [3, 5]
中心词 5 的上下文词是 [4, 6]
中心词 6 的上下文词是 [5]
中心词 7 的上下文词是 [8, 9]
中心词 8 的上下文词是 [7, 9]
中心词 9 的上下文词是 [7, 8]
tiny_dataset = [list(range(7)), list(range(7, 10))]
print('数据集', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):
print('中心词', center, '的上下文词是', context)
数据集 [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]
中心词 0 的上下文词是 [1]
中心词 1 的上下文词是 [0, 2, 3]
中心词 2 的上下文词是 [0, 1, 3, 4]
中心词 3 的上下文词是 [2, 4]
中心词 4 的上下文词是 [2, 3, 5, 6]
中心词 5 的上下文词是 [4, 6]
中心词 6 的上下文词是 [5]
中心词 7 的上下文词是 [8, 9]
中心词 8 的上下文词是 [7, 9]
中心词 9 的上下文词是 [7, 8]
在PTB数据集上进行训练时,我们将最大上下文窗口大小设置为5。下面提取数据集中的所有中心词及其上下文词。
all_centers, all_contexts = get_centers_and_contexts(corpus, 5)
f'# “中心词-上下文词对”的数量: {sum([len(contexts) for contexts in all_contexts])}'
'# “中心词-上下文词对”的数量: 1502639'
all_centers, all_contexts = get_centers_and_contexts(corpus, 5)
f'# “中心词-上下文词对”的数量: {sum([len(contexts) for contexts in all_contexts])}'
'# “中心词-上下文词对”的数量: 1499984'
all_centers, all_contexts = get_centers_and_contexts(corpus, 5)
f'# “中心词-上下文词对”的数量: {sum([len(contexts) for contexts in all_contexts])}'
'# “中心词-上下文词对”的数量: 1500181'
14.3.4. 负采样¶
我们使用负采样进行近似训练。为了根据预定义的分布对噪声词进行采样,我们定义以下RandomGenerator
类,其中(可能未规范化的)采样分布通过变量sampling_weights
传递。
#@save
class RandomGenerator:
"""根据n个采样权重在{1,...,n}中随机抽取"""
def __init__(self, sampling_weights):
# Exclude
self.population = list(range(1, len(sampling_weights) + 1))
self.sampling_weights = sampling_weights
self.candidates = []
self.i = 0
def draw(self):
if self.i == len(self.candidates):
# 缓存k个随机采样结果
self.candidates = random.choices(
self.population, self.sampling_weights, k=10000)
self.i = 0
self.i += 1
return self.candidates[self.i - 1]
#@save
class RandomGenerator:
"""根据n个采样权重在{1,...,n}中随机抽取"""
def __init__(self, sampling_weights):
# Exclude
self.population = list(range(1, len(sampling_weights) + 1))
self.sampling_weights = sampling_weights
self.candidates = []
self.i = 0
def draw(self):
if self.i == len(self.candidates):
# 缓存k个随机采样结果
self.candidates = random.choices(
self.population, self.sampling_weights, k=10000)
self.i = 0
self.i += 1
return self.candidates[self.i - 1]
#@save
class RandomGenerator:
"""根据n个采样权重在{1,...,n}中随机抽取"""
def __init__(self, sampling_weights):
# Exclude
self.population = list(range(1, len(sampling_weights) + 1))
self.sampling_weights = sampling_weights
self.candidates = []
self.i = 0
def draw(self):
if self.i == len(self.candidates):
# 缓存k个随机采样结果
self.candidates = random.choices(
self.population, self.sampling_weights, k=10000)
self.i = 0
self.i += 1
return self.candidates[self.i - 1]
例如,我们可以在索引1、2和3中绘制10个随机变量\(X\),采样概率为\(P(X=1)=2/9, P(X=2)=3/9\)和\(P(X=3)=4/9\),如下所示。
#@save
generator = RandomGenerator([2, 3, 4])
[generator.draw() for _ in range(10)]
[2, 2, 2, 3, 2, 1, 1, 2, 2, 1]
#@save
generator = RandomGenerator([2, 3, 4])
[generator.draw() for _ in range(10)]
[1, 2, 2, 3, 3, 3, 3, 2, 1, 2]
#@save
generator = RandomGenerator([2, 3, 4])
[generator.draw() for _ in range(10)]
[1, 2, 2, 1, 1, 1, 1, 1, 1, 3]
对于一对中心词和上下文词,我们随机抽取了K
个(实验中为5个)噪声词。根据word2vec论文中的建议,将噪声词\(w\)的采样概率\(P(w)\)设置为其在字典中的相对频率,其幂为0.75
(Mikolov et al., 2013)。
#@save
def get_negatives(all_contexts, vocab, counter, K):
"""返回负采样中的噪声词"""
# 索引为1、2、...(索引0是词表中排除的未知标记)
sampling_weights = [counter[vocab.to_tokens(i)]**0.75
for i in range(1, len(vocab))]
all_negatives, generator = [], RandomGenerator(sampling_weights)
for contexts in all_contexts:
negatives = []
while len(negatives) < len(contexts) * K:
neg = generator.draw()
# 噪声词不能是上下文词
if neg not in contexts:
negatives.append(neg)
all_negatives.append(negatives)
return all_negatives
all_negatives = get_negatives(all_contexts, vocab, counter, 5)
#@save
def get_negatives(all_contexts, vocab, counter, K):
"""返回负采样中的噪声词"""
# 索引为1、2、...(索引0是词表中排除的未知标记)
sampling_weights = [counter[vocab.to_tokens(i)]**0.75
for i in range(1, len(vocab))]
all_negatives, generator = [], RandomGenerator(sampling_weights)
for contexts in all_contexts:
negatives = []
while len(negatives) < len(contexts) * K:
neg = generator.draw()
# 噪声词不能是上下文词
if neg not in contexts:
negatives.append(neg)
all_negatives.append(negatives)
return all_negatives
all_negatives = get_negatives(all_contexts, vocab, counter, 5)
#@save
def get_negatives(all_contexts, vocab, counter, K):
"""返回负采样中的噪声词"""
# 索引为1、2、...(索引0是词表中排除的未知标记)
sampling_weights = [counter[vocab.to_tokens(i)]**0.75
for i in range(1, len(vocab))]
all_negatives, generator = [], RandomGenerator(sampling_weights)
for contexts in all_contexts:
negatives = []
while len(negatives) < len(contexts) * K:
neg = generator.draw()
# 噪声词不能是上下文词
if neg not in contexts:
negatives.append(neg)
all_negatives.append(negatives)
return all_negatives
all_negatives = get_negatives(all_contexts, vocab, counter, 5)
14.3.5. 小批量加载训练实例¶
在提取所有中心词及其上下文词和采样噪声词后,将它们转换成小批量的样本,在训练过程中可以迭代加载。
在小批量中,\(i^\mathrm{th}\)个样本包括中心词及其\(n_i\)个上下文词和\(m_i\)个噪声词。由于上下文窗口大小不同,\(n_i+m_i\)对于不同的\(i\)是不同的。因此,对于每个样本,我们在contexts_negatives
个变量中将其上下文词和噪声词连结起来,并填充零,直到连结长度达到\(\max_i n_i+m_i\)(max_len
)。为了在计算损失时排除填充,我们定义了掩码变量masks
。在masks
中的元素和contexts_negatives
中的元素之间存在一一对应关系,其中masks
中的0(否则为1)对应于contexts_negatives
中的填充。
为了区分正反例,我们在contexts_negatives
中通过一个labels
变量将上下文词与噪声词分开。类似于masks
,在labels
中的元素和contexts_negatives
中的元素之间也存在一一对应关系,其中labels
中的1(否则为0)对应于contexts_negatives
中的上下文词的正例。
上述思想在下面的batchify
函数中实现。其输入data
是长度等于批量大小的列表,其中每个元素是由中心词center
、其上下文词context
和其噪声词negative
组成的样本。此函数返回一个可以在训练期间加载用于计算的小批量,例如包括掩码变量。
#@save
def batchify(data):
"""返回带有负采样的跳元模型的小批量样本"""
max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:
cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += \
[context + negative + [0] * (max_len - cur_len)]
masks += [[1] * cur_len + [0] * (max_len - cur_len)]
labels += [[1] * len(context) + [0] * (max_len - len(context))]
return (np.array(centers).reshape((-1, 1)), np.array(
contexts_negatives), np.array(masks), np.array(labels))
#@save
def batchify(data):
"""返回带有负采样的跳元模型的小批量样本"""
max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:
cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += \
[context + negative + [0] * (max_len - cur_len)]
masks += [[1] * cur_len + [0] * (max_len - cur_len)]
labels += [[1] * len(context) + [0] * (max_len - len(context))]
return (torch.tensor(centers).reshape((-1, 1)), torch.tensor(
contexts_negatives), torch.tensor(masks), torch.tensor(labels))
#@save
def batchify(data):
"""返回带有负采样的跳元模型的小批量样本"""
max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:
cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += \
[context + negative + [0] * (max_len - cur_len)]
masks += [[1] * cur_len + [0] * (max_len - cur_len)]
labels += [[1] * len(context) + [0] * (max_len - len(context))]
return (paddle.to_tensor(centers).reshape((-1, 1)), paddle.to_tensor(
contexts_negatives), paddle.to_tensor(masks), paddle.to_tensor(labels))
让我们使用一个小批量的两个样本来测试此函数。
x_1 = (1, [2, 2], [3, 3, 3, 3])
x_2 = (1, [2, 2, 2], [3, 3])
batch = batchify((x_1, x_2))
names = ['centers', 'contexts_negatives', 'masks', 'labels']
for name, data in zip(names, batch):
print(name, '=', data)
centers = [[1.]
[1.]]
contexts_negatives = [[2. 2. 3. 3. 3. 3.]
[2. 2. 2. 3. 3. 0.]]
masks = [[1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 0.]]
labels = [[1. 1. 0. 0. 0. 0.]
[1. 1. 1. 0. 0. 0.]]
[07:19:04] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU
x_1 = (1, [2, 2], [3, 3, 3, 3])
x_2 = (1, [2, 2, 2], [3, 3])
batch = batchify((x_1, x_2))
names = ['centers', 'contexts_negatives', 'masks', 'labels']
for name, data in zip(names, batch):
print(name, '=', data)
centers = tensor([[1],
[1]])
contexts_negatives = tensor([[2, 2, 3, 3, 3, 3],
[2, 2, 2, 3, 3, 0]])
masks = tensor([[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 0]])
labels = tensor([[1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0]])
x_1 = (1, [2, 2], [3, 3, 3, 3])
x_2 = (1, [2, 2, 2], [3, 3])
batch = batchify((x_1, x_2))
names = ['centers', 'contexts_negatives', 'masks', 'labels']
for name, data in zip(names, batch):
print(name, '=', data)
centers = Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[1],
[1]])
contexts_negatives = Tensor(shape=[2, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
[[2, 2, 3, 3, 3, 3],
[2, 2, 2, 3, 3, 0]])
masks = Tensor(shape=[2, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
[[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 0]])
labels = Tensor(shape=[2, 6], dtype=int64, place=Place(cpu), stop_gradient=True,
[[1, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0]])
14.3.6. 整合代码¶
最后,我们定义了读取PTB数据集并返回数据迭代器和词表的load_data_ptb
函数。
#@save
def load_data_ptb(batch_size, max_window_size, num_noise_words):
"""下载PTB数据集,然后将其加载到内存中"""
sentences = read_ptb()
vocab = d2l.Vocab(sentences, min_freq=10)
subsampled, counter = subsample(sentences, vocab)
corpus = [vocab[line] for line in subsampled]
all_centers, all_contexts = get_centers_and_contexts(
corpus, max_window_size)
all_negatives = get_negatives(
all_contexts, vocab, counter, num_noise_words)
dataset = gluon.data.ArrayDataset(
all_centers, all_contexts, all_negatives)
data_iter = gluon.data.DataLoader(
dataset, batch_size, shuffle=True,batchify_fn=batchify,
num_workers=d2l.get_dataloader_workers())
return data_iter, vocab
#@save
def load_data_ptb(batch_size, max_window_size, num_noise_words):
"""下载PTB数据集,然后将其加载到内存中"""
num_workers = d2l.get_dataloader_workers()
sentences = read_ptb()
vocab = d2l.Vocab(sentences, min_freq=10)
subsampled, counter = subsample(sentences, vocab)
corpus = [vocab[line] for line in subsampled]
all_centers, all_contexts = get_centers_and_contexts(
corpus, max_window_size)
all_negatives = get_negatives(
all_contexts, vocab, counter, num_noise_words)
class PTBDataset(torch.utils.data.Dataset):
def __init__(self, centers, contexts, negatives):
assert len(centers) == len(contexts) == len(negatives)
self.centers = centers
self.contexts = contexts
self.negatives = negatives
def __getitem__(self, index):
return (self.centers[index], self.contexts[index],
self.negatives[index])
def __len__(self):
return len(self.centers)
dataset = PTBDataset(all_centers, all_contexts, all_negatives)
data_iter = torch.utils.data.DataLoader(
dataset, batch_size, shuffle=True,
collate_fn=batchify, num_workers=num_workers)
return data_iter, vocab
#@save
def load_data_ptb(batch_size, max_window_size, num_noise_words):
"""下载PTB数据集,然后将其加载到内存中"""
num_workers = d2l.get_dataloader_workers()
sentences = read_ptb()
vocab = d2l.Vocab(sentences, min_freq=10)
subsampled, counter = subsample(sentences, vocab)
corpus = [vocab[line] for line in subsampled]
all_centers, all_contexts = get_centers_and_contexts(
corpus, max_window_size)
all_negatives = get_negatives(
all_contexts, vocab, counter, num_noise_words)
class PTBDataset(paddle.io.Dataset):
def __init__(self, centers, contexts, negatives):
assert len(centers) == len(contexts) == len(negatives)
self.centers = centers
self.contexts = contexts
self.negatives = negatives
def __getitem__(self, index):
return (self.centers[index], self.contexts[index],
self.negatives[index])
def __len__(self):
return len(self.centers)
dataset = PTBDataset(all_centers, all_contexts, all_negatives)
data_iter = paddle.io.DataLoader(
dataset, batch_size=batch_size, shuffle=True, return_list=True,
collate_fn=batchify, num_workers=num_workers)
return data_iter, vocab
让我们打印数据迭代器的第一个小批量。
data_iter, vocab = load_data_ptb(512, 5, 5)
for batch in data_iter:
for name, data in zip(names, batch):
print(name, 'shape:', data.shape)
break
centers shape: (512, 1)
contexts_negatives shape: (512, 60)
masks shape: (512, 60)
labels shape: (512, 60)
data_iter, vocab = load_data_ptb(512, 5, 5)
for batch in data_iter:
for name, data in zip(names, batch):
print(name, 'shape:', data.shape)
break
centers shape: torch.Size([512, 1])
contexts_negatives shape: torch.Size([512, 60])
masks shape: torch.Size([512, 60])
labels shape: torch.Size([512, 60])
data_iter, vocab = load_data_ptb(512, 5, 5)
for batch in data_iter:
for name, data in zip(names, batch):
print(name, 'shape:', data.shape)
break
centers shape: [512, 1]
contexts_negatives shape: [512, 60]
masks shape: [512, 60]
labels shape: [512, 60]
14.3.7. 小结¶
高频词在训练中可能不是那么有用。我们可以对他们进行下采样,以便在训练中加快速度。
为了提高计算效率,我们以小批量方式加载样本。我们可以定义其他变量来区分填充标记和非填充标记,以及正例和负例。
14.3.8. 练习¶
如果不使用下采样,本节中代码的运行时间会发生什么变化?
RandomGenerator
类缓存k
个随机采样结果。将k
设置为其他值,看看它如何影响数据加载速度。本节代码中的哪些其他超参数可能会影响数据加载速度?