13.1. 图像增广¶ Open the notebook in SageMaker Studio Lab
7.1节提到过大型数据集是成功应用深度神经网络的先决条件。 图像增广在对训练图像进行一系列的随机变化之后,生成相似但不同的训练样本,从而扩大了训练集的规模。 此外,应用图像增广的原因是,随机改变训练样本可以减少模型对某些属性的依赖,从而提高模型的泛化能力。 例如,我们可以以不同的方式裁剪图像,使感兴趣的对象出现在不同的位置,减少模型对于对象出现位置的依赖。 我们还可以调整亮度、颜色等因素来降低模型对颜色的敏感度。 可以说,图像增广技术对于AlexNet的成功是必不可少的。本节将讨论这项广泛应用于计算机视觉的技术。
%matplotlib inline
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
%matplotlib inline
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.vision as paddlevision
from paddle import nn
13.1.1. 常用的图像增广方法¶
在对常用图像增广方法的探索时,我们将使用下面这个尺寸为\(400\times 500\)的图像作为示例。
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());
[07:07:52] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU
d2l.set_figsize()
img = d2l.Image.open('../img/cat1.jpg')
d2l.plt.imshow(img);
d2l.set_figsize()
img = d2l.Image.open('../img/cat1.jpg')
d2l.plt.imshow(img);
大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply
。
此函数在输入图像img
上多次运行图像增广方法aug
并显示所有结果。
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
Y = [aug(img) for _ in range(num_rows * num_cols)]
d2l.show_images(Y, num_rows, num_cols, scale=scale)
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
Y = [aug(img) for _ in range(num_rows * num_cols)]
d2l.show_images(Y, num_rows, num_cols, scale=scale)
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
Y = [aug(img) for _ in range(num_rows * num_cols)]
d2l.show_images(Y, num_rows, num_cols, scale=scale)
13.1.1.1. 翻转和裁剪¶
左右翻转图像通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。
接下来,我们使用transforms
模块来创建RandomFlipLeftRight
实例,这样就各有50%的几率使图像向左或向右翻转。
apply(img, gluon.data.vision.transforms.RandomFlipLeftRight())
apply(img, torchvision.transforms.RandomHorizontalFlip())
apply(img, paddlevision.transforms.RandomHorizontalFlip())
上下翻转图像不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个RandomFlipTopBottom
实例,使图像各有50%的几率向上或向下翻转。
apply(img, gluon.data.vision.transforms.RandomFlipTopBottom())
apply(img, torchvision.transforms.RandomVerticalFlip())
apply(img, paddlevision.transforms.RandomVerticalFlip())
在我们使用的示例图像中,猫位于图像的中间,但并非所有图像都是这样。 在 6.5节中,我们解释了汇聚层可以降低卷积层对目标位置的敏感性。 另外,我们可以通过对图像进行随机裁剪,使物体以不同的比例出现在图像的不同位置。 这也可以降低模型对目标位置的敏感性。
下面的代码将随机裁剪一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5~2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),\(a\)和\(b\)之间的随机数指的是在区间\([a, b]\)中通过均匀采样获得的连续值。
shape_aug = gluon.data.vision.transforms.RandomResizedCrop(
(200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
shape_aug = torchvision.transforms.RandomResizedCrop(
(200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
shape_aug = paddlevision.transforms.RandomResizedCrop(
(200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
13.1.1.2. 改变颜色¶
另一种增广方法是改变颜色。 我们可以改变图像颜色的四个方面:亮度、对比度、饱和度和色调。 在下面的示例中,我们随机更改图像的亮度,随机值为原始图像的50%(\(1-0.5\))到150%(\(1+0.5\))之间。
apply(img, gluon.data.vision.transforms.RandomBrightness(0.5))
apply(img, torchvision.transforms.ColorJitter(
brightness=0.5, contrast=0, saturation=0, hue=0))
apply(img, paddlevision.transforms.ColorJitter(
brightness=0.5, contrast=0, saturation=0, hue=0))
同样,我们可以随机更改图像的色调。
apply(img, gluon.data.vision.transforms.RandomHue(0.5))
apply(img, torchvision.transforms.ColorJitter(
brightness=0, contrast=0, saturation=0, hue=0.5))
apply(img, paddlevision.transforms.ColorJitter(
brightness=0, contrast=0, saturation=0, hue=0.5))
我们还可以创建一个RandomColorJitter
实例,并设置如何同时随机更改图像的亮度(brightness
)、对比度(contrast
)、饱和度(saturation
)和色调(hue
)。
color_aug = gluon.data.vision.transforms.RandomColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)
color_aug = torchvision.transforms.ColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)
color_aug = paddlevision.transforms.ColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)
13.1.1.3. 结合多种图像增广方法¶
在实践中,我们将结合多种图像增广方法。比如,我们可以通过使用一个Compose
实例来综合上面定义的不同的图像增广方法,并将它们应用到每个图像。
augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(), color_aug, shape_aug])
apply(img, augs)
augs = torchvision.transforms.Compose([
torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
augs = paddlevision.transforms.Compose([
paddle.vision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
13.1.2. 使用图像增广进行训练¶
让我们使用图像增广来训练模型。 这里,我们使用CIFAR-10数据集,而不是我们之前使用的Fashion-MNIST数据集。 这是因为Fashion-MNIST数据集中对象的位置和大小已被规范化,而CIFAR-10数据集中对象的颜色和大小差异更明显。 CIFAR-10数据集中的前32个训练图像如下所示。
d2l.show_images(gluon.data.vision.CIFAR10(
train=True)[0:32][0], 4, 8, scale=0.8);
Downloading /opt/mxnet/datasets/cifar10/cifar-10-binary.tar.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar10/cifar-10-binary.tar.gz...
all_images = torchvision.datasets.CIFAR10(train=True, root="../data",
download=True)
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8);
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ../data/cifar-10-python.tar.gz
0%| | 0/170498071 [00:00<?, ?it/s]
Extracting ../data/cifar-10-python.tar.gz to ../data
all_images = paddlevision.datasets.Cifar10(mode='train' , download=True)
print(len(all_images))
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8);
Cache file /home/ci/.cache/paddle/dataset/cifar/cifar-10-python.tar.gz not found, downloading https://dataset.bj.bcebos.com/cifar/cifar-10-python.tar.gz
Begin to download
item 41626/41626 [============================>.] - ETA: 0s - 1ms/item
Download finished
50000
为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,且在预测过程中不使用随机操作的图像增广。
在这里,我们只使用最简单的随机左右翻转。
此外,我们使用ToTensor
实例将一批图像转换为深度学习框架所要求的格式,即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。
train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor()])
test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor()])
接下来,我们定义了一个辅助函数,以便于读取图像和应用图像增广。Gluon数据集提供的transform_first
函数将图像增广应用于每个训练样本的第一个元素(由图像和标签组成),即应用在图像上。有关DataLoader
的详细介绍,请参阅
3.5节。
def load_cifar10(is_train, augs, batch_size):
return gluon.data.DataLoader(
gluon.data.vision.CIFAR10(train=is_train).transform_first(augs),
batch_size=batch_size, shuffle=is_train,
num_workers=d2l.get_dataloader_workers())
train_augs = torchvision.transforms.Compose([
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor()])
test_augs = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()])
接下来,我们定义一个辅助函数,以便于读取图像和应用图像增广。PyTorch数据集提供的transform
参数应用图像增广来转化图像。有关DataLoader
的详细介绍,请参阅
3.5节。
def load_cifar10(is_train, augs, batch_size):
dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
transform=augs, download=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
shuffle=is_train, num_workers=d2l.get_dataloader_workers())
return dataloader
train_augs = paddlevision.transforms.Compose([
paddlevision.transforms.RandomHorizontalFlip(),
paddlevision.transforms.ToTensor()])
test_augs = paddlevision.transforms.Compose([
paddlevision.transforms.ToTensor()])
def load_cifar10(is_train, augs, batch_size):
dataset = paddlevision.datasets.Cifar10(mode="train",
transform=augs, download=True)
dataloader = paddle.io.DataLoader(dataset, batch_size=batch_size,
num_workers=d2l.get_dataloader_workers(), shuffle=is_train)
return dataloader
13.1.2.1. 多GPU训练¶
我们在CIFAR-10数据集上训练 7.6节中的ResNet-18模型。 回想一下 12.6节中对多GPU训练的介绍。 接下来,我们定义一个函数,使用多GPU对模型进行训练和评估。
#@save
def train_batch_ch13(net, features, labels, loss, trainer, devices,
split_f=d2l.split_batch):
"""用多GPU进行小批量训练"""
X_shards, y_shards = split_f(features, labels, devices)
with autograd.record():
pred_shards = [net(X_shard) for X_shard in X_shards]
ls = [loss(pred_shard, y_shard) for pred_shard, y_shard
in zip(pred_shards, y_shards)]
for l in ls:
l.backward()
# True标志允许使用过时的梯度,这很有用(例如,在微调BERT中)
trainer.step(labels.shape[0], ignore_stale_grad=True)
train_loss_sum = sum([float(l.sum()) for l in ls])
train_acc_sum = sum(d2l.accuracy(pred_shard, y_shard)
for pred_shard, y_shard in zip(pred_shards, y_shards))
return train_loss_sum, train_acc_sum
#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices=d2l.try_all_gpus(), split_f=d2l.split_batch):
"""用多GPU进行模型训练"""
timer, num_batches = d2l.Timer(), len(train_iter)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
# 4个维度:储存训练损失,训练准确度,实例数,特点数
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = train_batch_ch13(
net, features, labels, loss, trainer, devices, split_f)
metric.add(l, acc, labels.shape[0], labels.size)
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))
test_acc = d2l.evaluate_accuracy_gpus(net, test_iter, split_f)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {metric[0] / metric[2]:.3f}, train acc '
f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
f'{str(devices)}')
#@save
def train_batch_ch13(net, X, y, loss, trainer, devices):
"""用多GPU进行小批量训练"""
if isinstance(X, list):
# 微调BERT中所需
X = [x.to(devices[0]) for x in X]
else:
X = X.to(devices[0])
y = y.to(devices[0])
net.train()
trainer.zero_grad()
pred = net(X)
l = loss(pred, y)
l.sum().backward()
trainer.step()
train_loss_sum = l.sum()
train_acc_sum = d2l.accuracy(pred, y)
return train_loss_sum, train_acc_sum
#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices=d2l.try_all_gpus()):
"""用多GPU进行模型训练"""
timer, num_batches = d2l.Timer(), len(train_iter)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
legend=['train loss', 'train acc', 'test acc'])
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
for epoch in range(num_epochs):
# 4个维度:储存训练损失,训练准确度,实例数,特点数
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = train_batch_ch13(
net, features, labels, loss, trainer, devices)
metric.add(l, acc, labels.shape[0], labels.numel())
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))
test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {metric[0] / metric[2]:.3f}, train acc '
f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
f'{str(devices)}')
#@save
def train_batch_ch13(net, X, y, loss, trainer, devices):
"""用多GPU进行小批量训练
飞桨不支持在notebook上进行多GPU训练
Defined in :numref:`sec_image_augmentation`"""
if isinstance(X, list):
# 微调BERT中所需(稍后讨论)
X = [paddle.to_tensor(x, place=devices[0]) for x in X]
else:
X = paddle.to_tensor(X, place=devices[0])
y = paddle.to_tensor(y, place=devices[0])
net.train()
trainer.clear_grad()
pred = net(X)
l = loss(pred, y)
l.sum().backward()
trainer.step()
train_loss_sum = l.sum()
train_acc_sum = d2l.accuracy(pred, y)
return train_loss_sum, train_acc_sum
#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices=d2l.try_all_gpus()):
"""用多GPU进行模型训练
Defined in :numref:`sec_image_augmentation`"""
timer, num_batches = d2l.Timer(), len(train_iter)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
legend=['train loss', 'train acc', 'test acc'])
net = paddle.DataParallel(net)
for epoch in range(num_epochs):
# 4个维度:储存训练损失,训练准确度,实例数,特点数
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = train_batch_ch13(
net, features, labels, loss, trainer, devices)
metric.add(l, acc, labels.shape[0], labels.numel())
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))
test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {metric[0] / metric[2]:.3f}, train acc '
f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
f'{str(devices)}')
现在,我们可以定义train_with_data_aug
函数,使用图像增广来训练模型。该函数获取所有的GPU,并使用Adam作为训练的优化算法,将图像增广应用于训练集,最后调用刚刚定义的用于训练和评估模型的train_ch13
函数。
batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10)
net.initialize(init=init.Xavier(), ctx=devices)
def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'adam',
{'learning_rate': lr})
train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)
[07:08:22] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for GPU
[07:08:22] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for GPU
batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10, 3)
def init_weights(m):
if type(m) in [nn.Linear, nn.Conv2d]:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)
loss = nn.CrossEntropyLoss(reduction="none")
trainer = torch.optim.Adam(net.parameters(), lr=lr)
train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)
batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10, 3)
def init_weights(m):
if type(m) in [nn.Linear, nn.Conv2D]:
nn.initializer.XavierUniform(m.weight)
net.apply(init_weights)
def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)
loss = nn.CrossEntropyLoss(reduction="none")
trainer = paddle.optimizer.Adam(learning_rate=lr, parameters=net.parameters())
train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices[:1])
W0818 09:18:14.902511 73688 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.8, Runtime API Version: 11.8
W0818 09:18:14.932250 73688 gpu_resources.cc:91] device: 0, cuDNN Version: 8.7.
让我们使用基于随机左右翻转的图像增广来训练模型。
train_with_data_aug(train_augs, test_augs, net)
loss 0.173, train acc 0.940, test acc 0.855
2158.6 examples/sec on [gpu(0), gpu(1)]
train_with_data_aug(train_augs, test_augs, net)
loss 0.173, train acc 0.941, test acc 0.854
4183.9 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]
train_with_data_aug(train_augs, test_augs, net)
loss 0.166, train acc 0.944, test acc 0.936
3465.5 examples/sec on [Place(gpu:0)]
13.1.3. 小结¶
图像增广基于现有的训练数据生成随机图像,来提高模型的泛化能力。
为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,而在预测过程中不使用带随机操作的图像增广。
深度学习框架提供了许多不同的图像增广方法,这些方法可以被同时应用。
13.1.4. 练习¶
在不使用图像增广的情况下训练模型:
train_with_data_aug(no_aug, no_aug)
。比较使用和不使用图像增广的训练结果和测试精度。这个对比实验能支持图像增广可以减轻过拟合的论点吗?为什么?在基于CIFAR-10数据集的模型训练中结合多种不同的图像增广方法。它能提高测试准确性吗?
参阅深度学习框架的在线文档。它还提供了哪些其他的图像增广方法?