7.4. 含并行连结的网络(GoogLeNet)¶ Open the notebook in SageMaker Studio Lab
在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet (Szegedy et al., 2015)的网络架构大放异彩。 GoogLeNet吸收了NiN中串联网络的思想,并在此基础上做了改进。 这篇论文的一个重点是解决了什么样大小的卷积核最合适的问题。 毕竟,以前流行的网络使用小到\(1 \times 1\),大到\(11 \times 11\)的卷积核。 本文的一个观点是,有时使用不同大小的卷积核组合是有利的。 本节将介绍一个稍微简化的GoogLeNet版本:我们省略了一些为稳定训练而添加的特殊特性,现在有了更好的训练方法,这些特性不是必要的。
7.4.1. Inception块¶
在GoogLeNet中,基本的卷积块被称为Inception块(Inception block)。这很可能得名于电影《盗梦空间》(Inception),因为电影中的一句话“我们需要走得更深”(“We need to go deeper”)。
如 图7.4.1所示,Inception块由四条并行路径组成。 前三条路径使用窗口大小为\(1\times 1\)、\(3\times 3\)和\(5\times 5\)的卷积层,从不同空间大小中提取信息。 中间的两条路径在输入上执行\(1\times 1\)卷积,以减少通道数,从而降低模型的复杂性。 第四条路径使用\(3\times 3\)最大汇聚层,然后使用\(1\times 1\)卷积层来改变通道数。 这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()
class Inception(nn.Block):
# c1--c4是每条路径的输出通道数
def __init__(self, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
# 线路1,单1x1卷积层
self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
# 线路2,1x1卷积层后接3x3卷积层
self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
self.p2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1,
activation='relu')
# 线路3,1x1卷积层后接5x5卷积层
self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
self.p3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2,
activation='relu')
# 线路4,3x3最大汇聚层后接1x1卷积层
self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')
def forward(self, x):
p1 = self.p1_1(x)
p2 = self.p2_2(self.p2_1(x))
p3 = self.p3_2(self.p3_1(x))
p4 = self.p4_2(self.p4_1(x))
# 在通道维度上连结输出
return np.concatenate((p1, p2, p3, p4), axis=1)
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Inception(nn.Module):
# c1--c4是每条路径的输出通道数
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
# 线路1,单1x1卷积层
self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
# 线路2,1x1卷积层后接3x3卷积层
self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
# 线路3,1x1卷积层后接5x5卷积层
self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
# 线路4,3x3最大汇聚层后接1x1卷积层
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
# 在通道维度上连结输出
return torch.cat((p1, p2, p3, p4), dim=1)
import tensorflow as tf
from d2l import tensorflow as d2l
class Inception(tf.keras.Model):
# c1--c4是每条路径的输出通道数
def __init__(self, c1, c2, c3, c4):
super().__init__()
# 线路1,单1x1卷积层
self.p1_1 = tf.keras.layers.Conv2D(c1, 1, activation='relu')
# 线路2,1x1卷积层后接3x3卷积层
self.p2_1 = tf.keras.layers.Conv2D(c2[0], 1, activation='relu')
self.p2_2 = tf.keras.layers.Conv2D(c2[1], 3, padding='same',
activation='relu')
# 线路3,1x1卷积层后接5x5卷积层
self.p3_1 = tf.keras.layers.Conv2D(c3[0], 1, activation='relu')
self.p3_2 = tf.keras.layers.Conv2D(c3[1], 5, padding='same',
activation='relu')
# 线路4,3x3最大汇聚层后接1x1卷积层
self.p4_1 = tf.keras.layers.MaxPool2D(3, 1, padding='same')
self.p4_2 = tf.keras.layers.Conv2D(c4, 1, activation='relu')
def call(self, x):
p1 = self.p1_1(x)
p2 = self.p2_2(self.p2_1(x))
p3 = self.p3_2(self.p3_1(x))
p4 = self.p4_2(self.p4_1(x))
# 在通道维度上连结输出
return tf.keras.layers.Concatenate()([p1, p2, p3, p4])
import warnings
from d2l import paddle as d2l
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class Inception(nn.Layer):
# c1--c4是每条路径的输出通道数
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
# 线路1,单1x1卷积层
self.p1_1 = nn.Conv2D(in_channels, c1, kernel_size=1)
# 线路2,1x1卷积层后接3x3卷积层
self.p2_1 = nn.Conv2D(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2D(c2[0], c2[1], kernel_size=3, padding=1)
# 线路3,1x1卷积层后接5x5卷积层
self.p3_1 = nn.Conv2D(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2D(c3[0], c3[1], kernel_size=5, padding=2)
# 线路4,3x3最大池化层后接1x1卷积层
self.p4_1 = nn.MaxPool2D(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2D(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
# 在通道维度上连结输出
return paddle.concat(x=[p1, p2, p3, p4], axis=1)
那么为什么GoogLeNet这个网络如此有效呢? 首先我们考虑一下滤波器(filter)的组合,它们可以用各种滤波器尺寸探索图像,这意味着不同大小的滤波器可以有效地识别不同范围的图像细节。 同时,我们可以为不同的滤波器分配不同数量的参数。
7.4.2. GoogLeNet模型¶
如 图7.4.2所示,GoogLeNet一共使用9个Inception块和全局平均汇聚层的堆叠来生成其估计值。Inception块之间的最大汇聚层可降低维度。 第一个模块类似于AlexNet和LeNet,Inception块的组合从VGG继承,全局平均汇聚层避免了在最后使用全连接层。
现在,我们逐一实现GoogLeNet的每个模块。第一个模块使用64个通道、\(7\times 7\)卷积层。
b1 = nn.Sequential()
b1.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
def b1():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, 7, strides=2, padding='same',
activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
b1 = nn.Sequential(nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2,padding=1))
W0818 09:46:08.883092 94744 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.8, Runtime API Version: 11.8
W0818 09:46:08.925873 94744 gpu_resources.cc:91] device: 0, cuDNN Version: 8.7.
第二个模块使用两个卷积层:第一个卷积层是64个通道、\(1\times 1\)卷积层;第二个卷积层使用将通道数量增加三倍的\(3\times 3\)卷积层。 这对应于Inception块中的第二条路径。
b2 = nn.Sequential()
b2.add(nn.Conv2D(64, kernel_size=1, activation='relu'),
nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2d(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
def b2():
return tf.keras.Sequential([
tf.keras.layers.Conv2D(64, 1, activation='relu'),
tf.keras.layers.Conv2D(192, 3, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
b2 = nn.Sequential(nn.Conv2D(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2D(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
第三个模块串联两个完整的Inception块。 第一个Inception块的输出通道数为\(64+128+32+32=256\),四个路径之间的输出通道数量比为\(64:128:32:32=2:4:1:1\)。 第二个和第三个路径首先将输入通道的数量分别减少到\(96/192=1/2\)和\(16/192=1/12\),然后连接第二个卷积层。第二个Inception块的输出通道数增加到\(128+192+96+64=480\),四个路径之间的输出通道数量比为\(128:192:96:64 = 4:6:3:2\)。 第二条和第三条路径首先将输入通道的数量分别减少到\(128/256=1/2\)和\(32/256=1/8\)。
b3 = nn.Sequential()
b3.add(Inception(64, (96, 128), (16, 32), 32),
Inception(128, (128, 192), (32, 96), 64),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
def b3():
return tf.keras.models.Sequential([
Inception(64, (96, 128), (16, 32), 32),
Inception(128, (128, 192), (32, 96), 64),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
第四模块更加复杂, 它串联了5个Inception块,其输出通道数分别是\(192+208+48+64=512\)、\(160+224+64+64=512\)、\(128+256+64+64=512\)、\(112+288+64+64=528\)和\(256+320+128+128=832\)。 这些路径的通道数分配和第三模块中的类似,首先是含\(3×3\)卷积层的第二条路径输出最多通道,其次是仅含\(1×1\)卷积层的第一条路径,之后是含\(5×5\)卷积层的第三条路径和含\(3×3\)最大汇聚层的第四条路径。 其中第二、第三条路径都会先按比例减小通道数。 这些比例在各个Inception块中都略有不同。
b4 = nn.Sequential()
b4.add(Inception(192, (96, 208), (16, 48), 64),
Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
def b4():
return tf.keras.Sequential([
Inception(192, (96, 208), (16, 48), 64),
Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2D(kernel_size=3, stride=2, padding=1))
第五模块包含输出通道数为\(256+320+128+128=832\)和\(384+384+128+128=1024\)的两个Inception块。 其中每条路径通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。 需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均汇聚层,将每个通道的高和宽变成1。 最后我们将输出变成二维数组,再接上一个输出个数为标签类别数的全连接层。
b5 = nn.Sequential()
b5.add(Inception(256, (160, 320), (32, 128), 128),
Inception(384, (192, 384), (48, 128), 128),
nn.GlobalAvgPool2D())
net = nn.Sequential()
net.add(b1, b2, b3, b4, b5, nn.Dense(10))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
def b5():
return tf.keras.Sequential([
Inception(256, (160, 320), (32, 128), 128),
Inception(384, (192, 384), (48, 128), 128),
tf.keras.layers.GlobalAvgPool2D(),
tf.keras.layers.Flatten()
])
# “net”必须是一个将被传递给“d2l.train_ch6()”的函数。
# 为了利用我们现有的CPU/GPU设备,这样模型构建/编译需要在“strategy.scope()”
def net():
return tf.keras.Sequential([b1(), b2(), b3(), b4(), b5(),
tf.keras.layers.Dense(10)])
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2D((1, 1)),
nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。 为了使Fashion-MNIST上的训练短小精悍,我们将输入的高和宽从224降到96,这简化了计算。下面演示各个模块输出的形状变化。
X = np.random.uniform(size=(1, 1, 96, 96))
net.initialize()
for layer in net:
X = layer(X)
print(layer.name, 'output shape:\t', X.shape)
[07:34:43] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU
sequential0 output shape: (1, 64, 24, 24)
sequential1 output shape: (1, 192, 12, 12)
sequential2 output shape: (1, 480, 6, 6)
sequential3 output shape: (1, 832, 3, 3)
sequential4 output shape: (1, 1024, 1, 1)
dense0 output shape: (1, 10)
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape: torch.Size([1, 64, 24, 24])
Sequential output shape: torch.Size([1, 192, 12, 12])
Sequential output shape: torch.Size([1, 480, 6, 6])
Sequential output shape: torch.Size([1, 832, 3, 3])
Sequential output shape: torch.Size([1, 1024])
Linear output shape: torch.Size([1, 10])
X = tf.random.uniform(shape=(1, 96, 96, 1))
for layer in net().layers:
X = layer(X)
print(layer.__class__.__name__, 'output shape:\t', X.shape)
Sequential output shape: (1, 24, 24, 64)
Sequential output shape: (1, 12, 12, 192)
Sequential output shape: (1, 6, 6, 480)
Sequential output shape: (1, 3, 3, 832)
Sequential output shape: (1, 1024)
Dense output shape: (1, 10)
X = paddle.rand(shape=(1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape: [1, 64, 24, 24]
Sequential output shape: [1, 192, 12, 12]
Sequential output shape: [1, 480, 6, 6]
Sequential output shape: [1, 832, 3, 3]
Sequential output shape: [1, 1024]
Linear output shape: [1, 10]
7.4.3. 训练模型¶
和以前一样,我们使用Fashion-MNIST数据集来训练我们的模型。在训练之前,我们将图片转换为\(96 \times 96\)分辨率。
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.256, train acc 0.903, test acc 0.907
2343.6 examples/sec on gpu(0)
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.262, train acc 0.900, test acc 0.886
3265.5 examples/sec on cuda:0
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.248, train acc 0.905, test acc 0.899
3758.1 examples/sec on /GPU:0
<keras.engine.sequential.Sequential at 0x7f39740e3d60>
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.213, train acc 0.919, test acc 0.904
1381.9 examples/sec on Place(gpu:0)
7.4.4. 小结¶
Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大汇聚层来并行抽取信息,并使用\(1×1\)卷积层减少每像素级别上的通道维数从而降低模型复杂度。
GoogLeNet将多个设计精细的Inception块与其他层(卷积层、全连接层)串联起来。其中Inception块的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。
GoogLeNet和它的后继者们一度是ImageNet上最有效的模型之一:它以较低的计算复杂度提供了类似的测试精度。
7.4.5. 练习¶
GoogLeNet有一些后续版本。尝试实现并运行它们,然后观察实验结果。这些后续版本包括:
添加批量规范化层 (Ioffe and Szegedy, 2015)(batch normalization),在 7.5节中将介绍;
对Inception模块进行调整 (Szegedy et al., 2016);
使用标签平滑(label smoothing)进行模型正则化 (Szegedy et al., 2016);
加入残差连接 (Szegedy et al., 2017)。( 7.6节将介绍)。
使用GoogLeNet的最小图像大小是多少?
将AlexNet、VGG和NiN的模型参数大小与GoogLeNet进行比较。后两个网络架构是如何显著减少模型参数大小的?